skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kim, Byungji"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Bacterial infections are re-emerging as substantial threats to global health due to the limited selection of antibiotics that are capable of overcoming antibiotic-resistant strains. By deterring such mutations whilst minimizing the need to develop new pathogen-specific antibiotics, immunotherapy offers a broad-spectrum therapeutic solution against bacterial infections. In particular, pathology resulting from excessive immune response ( i.e. fibrosis, necrosis, exudation, breath impediment) contributes significantly to negative disease outcome. Herein, we present a nanoparticle that is targeted to activated macrophages and loaded with siRNA against the Irf5 gene. This formulation is able to induce >80% gene silencing in activated macrophages in vivo , and it inhibits the excessive inflammatory response, generating a significantly improved therapeutic outcome in mouse models of bacterial infection. The versatility of the approach is demonstrated using mice with antibiotic-resistant Gram-positive (methicillin-resistant Staphylococcus aureus ) and Gram-negative ( Pseudomonas aeruginosa ) muscle and lung infections, respectively. Effective depletion of the Irf5 gene in macrophages is found to significantly improve the therapeutic outcome of infected mice, regardless of the bacteria strain and type. 
    more » « less
  2. Abstract Maintaining stable drug concentrations in the bloodstream is a challenge for injectable hydrophobic progestin contraceptives. This work investigates porous silicon dioxide (pSiO2) microparticles as a delivery vehicle for progestins via melt‐infiltration of drugs into the mesopores. The pSiO2is prepared through electrochemical anodization of single‐crystalline silicon followed by thermal oxidation, yielding vertically oriented pores (≈50 nm diameter) with porosity varied (between 35–75%) to optimize drug loading and release. Among the progestins tested, etonogestrel and levonorgestrel (LNG) decompose near their melting points, preventing melt infiltration. However, addition of 20% cholesterol by mass suppresses the melting point of LNG sufficiently to enable loading without degradation. Mass loadings exceeding 50% (drug: drug + carrier) are achieved for segesterone acetate (SEG) and LNG, retaining drug crystallinity as confirmed by X‐ray diffraction. In vitro, both SEG and LNG‐loaded pSiO2display sustained drug release for up to 3 months, with reduced burst release, more constant steady‐state concentrations, and a substantially reduced tail compared to pure LNG or SEG, or SEG loaded into pSiO2from a chloroform solution. In a pilot in vivo study, SEG‐loaded pSiO2microparticles are well tolerated in 20‐week‐old female rats over a 25‐week period, with no signs of toxicity. 
    more » « less
  3. null (Ed.)
    Porous silicon (pSi) nanoparticles are loaded with Immunoglobulin A-2 (IgA2) antibodies, and the assembly is coated with pH-responsive polymers on the basis of the Eudragit family of enteric polymers (L100, S100, and L30-D55). The temporal release of the protein from the nanocomposite formulations is quantified following an in vitro protocol simulating oral delivery: incubation in simulated gastric fluid (SGF; at pH 1.2) for 2 h, followed by a fasting state simulated intestinal fluid (FasSIF; at pH 6.8) or phosphate buffer solution (PBS; at pH 7.4). The nanocomposite formulations display a negligible release in SGF, while more than 50% of the loaded IgA2 is released in solutions at a pH of 6.8 (FasSIF) or 7.4 (PBS). Between 21 and 44% of the released IgA2 retains its functional activity. A capsule-based system is also evaluated, where the IgA2-loaded particles are packed into a gelatin capsule and the capsule is coated with either EudragitL100 or EudragitS100 polymer for a targeted release in the small intestine or the colon, respectively. The capsule-based formulations outperform polymer-coated nanoparticles in vitro, preserving 45−54% of the activity of the released protein. 
    more » « less